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SUMMARY

A variant of immersed boundary-lattice Boltzmann method (IB-LBM) is presented in this paper to
simulate incompressible viscous flows around moving objects. As compared with the conventional
IB-LBM where the force density is computed explicitly by Hook’s law or the direct forcing method and the
non-slip condition is only approximately satisfied, in the present work, the force density term is considered
as the velocity correction which is determined by enforcing the non-slip condition at the boundary. The
lift and drag forces on the moving object can be easily calculated via the velocity correction on the
boundary points. The capability of the present method for moving objects is well demonstrated through
its application to simulate flows around a moving circular cylinder, a rotationally oscillating cylinder, and
an elliptic flapping wing. Furthermore, the simulation of flows around a flapping flexible airfoil is carried
out to exhibit the ability of the present method for implementing the elastic boundary condition. It was
found that under certain conditions, the flapping flexible airfoil can generate larger propulsive force than
the flapping rigid airfoil. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, the study on interaction between fluid and moving objects receives more and more
attention as moving boundary problems are often appeared in the study of fish motion, insect
flight, blood flow through heart valves, and countless others. Simulation of flows around moving

∗Correspondence to: C. Shu, Department of Mechanical Engineering, National University of Singapore, 10 Kent
Ridge Crescent, Singapore 119260, Singapore.

†E-mail: mpeshuc@nus.edu.sg

Contract/grant sponsor: National Natural Science Foundation of China; contract/grant number: 10728206

Copyright q 2009 John Wiley & Sons, Ltd.



328 J. WU, C. SHU AND Y. H. ZHANG

objects accurately and efficiently puts a great challenge to numerical techniques, and is currently
at the forefront in the computational fluid dynamics.

The numerical approaches for simulation of flows around moving objects can be roughly clas-
sified into two major categories, boundary conforming methods and non-boundary conforming
methods. For the boundary conforming methods, the boundary points coincide with the mesh points.
So, the physical boundary condition can be implemented directly. One of popular methods in this
category is the use of time-dependent coordinate transformation [1–4], in which the moving phys-
ical domain is transformed into a fixed computational domain and all the numerical computations
are easily performed in the computational domain. This approach is very efficient for the case where
the whole object moves at the same mode. When the part of objects moves locally with a different
mode, the multi-block time-dependent coordinate transformation, which could be very tedious, has
to be applied. To consider the general moving boundary problem, Li et al. [5] proposed the moving
mesh finite element algorithm, in which re-meshing and interpolation are needed. Perhaps, the
most popular boundary conforming method is the arbitrary Lagrangian Eulerian (ALE) approach
[6–11], which is normally applied with finite difference, finite volume, and finite element schemes.
Owing to regenerating the mesh to conform to the boundary at all times, it becomes difficult for
the ALE approach to solve the moving boundary problems with complex geometry, especially
for the three-dimensional problem. In the category of non-boundary conforming methods, the
governing equations are solved on a fixed Cartesian grid, and the boundary no longer coincides
with the grid surface. The effect of boundary is accounted through the proper treatment of the
solution variables at grid cells around the boundary. As compared with the boundary conforming
methods, the non-boundary conforming methods eliminate the requirement of tedious grid adap-
tation, which makes the simulation of flows around complex boundaries undergoing movement be
more straightforward.

In terms of the treatment of the boundary conditions, the non-boundary conforming methods can
be further classified as Cartesian grid methods and immersed boundary methods. In the Cartesian
grid methods, the boundary is treated as a sharp interface, and the grid cells around the body surface
are cut by the immersed boundary. The Cartesian grid methods have been successfully applied to
solve many inviscid and viscous flow problems [12–16]. However, due to irregular structures of
the cut cells, the calculation of fluxes at the interface of cut cells requires complicated treatment,
which may bring inconvenience and affect the computational efficiency. Recently, Zhou et al. [17]
proposed an efficient Cartesian grid method, namely, the local domain-free discretization (DFD)
method, for simulation of compressible flows around moving boundaries. In the local DFD method,
the boundary information is transferred to an adjacent point to the boundary through low-order
interpolation.

The immersed boundary method (IBM) may be the simplest non-boundary conforming method.
It has been firstly proposed by Peskin [18] in the 1970s when he studied the blood flow in the human
heart. Since then, numerous modifications and refinements have been proposed and a number of
variants of this approach were proposed [19–22]. In the IBM, the flow field is represented by
a set of Eulerian points, which are in fact the fixed Cartesian mesh points, and the boundary of
immersed object is represented by a set of Lagrangian points. The basic idea of IBM is to treat
the physical boundary as deformable with high stiffness. A small distortion of the boundary will
yield a force that tends to restore the boundary into its original shape. The balances of such forces
are distributed into the Eulerian points and the Navier–Stokes (N–S) equations with a body force
are solved on the whole domain including exterior and interior of the object. Usually, in the IBM,
the flow field is obtained by solving the N-S equations. Recently, as an alternative computational

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:327–354
DOI: 10.1002/fld



IMMERSED BOUNDARY-LATTICE BOLTZMANN METHOD 329

technique to the N-S solver, the lattice Boltzmann method (LBM) [23] has been proven to be an
efficient approach for simulation of flow field. Based on the kinetic theory, the LBM studies the
dynamics of fictitious particles by using the density distribution functions. It contains the collision
and streaming processes. The macroscopic variables such as density and velocity can be calculated
through the density distribution functions from the conservation laws of mass and momentum. The
major advantage of LBM is its simplicity, easy implementation, algebraic operation, and intrinsic
parallel nature. Like the IBM, the standard LBM is usually applied on the Cartesian mesh. Owing to
this common feature, it is desirable to combine these two methods together. Many efforts [24–26]
have been made in this aspect.

One of key issues in the application of IBM is the computation of restoring force. Basically,
there are three ways. The popular way is the penalty method [18], in which Hook’s law is applied
and the spring parameter needs to be specified by the user. The second way is called the direct
forcing method, which has been introduced firstly by Fadlun et al. [27]. This way directly applies
the momentum equations at the boundary points to compute the force density. The third way was
proposed by Niu et al. [28], in which the momentum exchange at the boundary is used to compute
the force. It is noted that all the three ways compute the restoring force explicitly. As pointed out
by Shu et al. [29], the pre-calculated restoring force cannot guarantee that the corrected velocity
field due to presence of immersed boundary satisfies the non-slip condition at the boundary point.
As a result, obvious flow penetration to the immersed boundary can be observed in the IBM
results. Flow penetration implies mass exchange across the boundary. As we know, mass exchange
would bring the momentum exchange, leading to a numerical force. Clearly, this force error will
affect the accuracy of lift and drag forces acting on the immersed object. This greatly limits the
application of IBM to the moving boundary problems.

To overcome the flow penetration problem in IBM results, a variant of immersed boundary-
lattice Boltzmann method (IB-LBM) is presented in this work, where the restoring force is not
pre-calculated and the flow field is obtained by the lattice Boltzmann method. In the present
work, the restoring force is determined by enforcing the non-slip condition on the boundary. Since
the non-slip condition is accurately satisfied, no flow penetration can be found in the present
results. Owing to this improvement, it is expected that the present approach can be well applied to
simulate flows around moving objects. The flows around a moving circular cylinder, a rotationally
oscillating cylinder, and an elliptic flapping wing are chosen to validate the present approach.
The obtained results agree very well with available data in the literature. Furthermore, the flow
around the flapping flexible airfoil is simulated to exhibit the ability of the present approach for
implementing the elastic boundary condition.

2. NUMERICAL METHOD

2.1. Conventional immersed boundary method

In the immersed boundary method, the effect of boundary to the surrounding fluids is through a
force density exerting on them. The governing equations of immersed boundary method for the
viscous incompressible flows can be written as

�

(
�u
�t

+u·∇u
)

+∇p=��u+f (1)
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∇ ·u=0 (2)

f(x, t)=
∫

�
F(s, t)�(x−X(s, t))ds (3)

�X(s, t)

�t
=u(X(s, t), t)=

∫
�
u(x, t)�(x−X(s, t))dx (4)

where x, u, and f are the Eulerian coordinates, fluid velocity, and force density acting on the fluid,
respectively, p is the fluid pressure, � is the fluid density, and � is the dynamic viscosity. X and
F represent Lagrangian coordinates and boundary force density. �(x−X(s, t)) is a Dirac delta
function. Equations (1) and (2) are the N-S equations with external force. Equations (3) and (4)
describe the interaction between the immersed boundary and the fluid flow by distributing the
boundary force at the Lagrangian points to the Eulerian points and interpolating the velocity at
the Eulerian points to Lagrangian points. The calculation of boundary force density F, which is
also called restoring force, is critical in the IBM. Using Hooke’s law, it can be determined by

F(s, t)=−k��=−k(Vfluid�t−Vwall�t) (5)

where Vfluid is the fluid velocity at the boundary point interpolated from the surrounding fluid
(Eulerian) points, Vwall is the boundary velocity of the object, k is the spring coefficient. Note
that the boundary force density can also be computed by the direct forcing method [27] and the
momentum exchange method [28]. The basic solution process of IBM can be summarized as
follows:

(1) Set force density f as zero at beginning. Solve Equations (1) and (2) to get flow variables
at Eulerian points.

(2) Interpolate velocity at Eulerian points to the boundary (Lagrangian) points by using
Equation (4).

(3) Use interpolated velocity given in step (2) and the boundary velocity of the object to compute
the boundary force density F by using Equation (5).

(4) Compute the force density f at Eulerian points by using Equation (3).
(5) Solve Equations (1) and (2) with the force density f to get the corrected velocity field at

Eulerian points.
(6) Go back to step (2) until the convergence criterion is satisfied.

It should be noted that in the above process, when the boundary force density F, and therefore the
force density f, is computed explicitly, the new (corrected) velocity given in step (5) may not satisfy
the non-slip boundary condition. So, IBM needs to continue the process until convergence state is
reached, and hopes that at the converged state, the non-slip condition can be satisfied. However, we
have to indicate that in the whole process, there is no guarantee to satisfy the non-slip boundary
condition. Indeed, it is only approximately satisfied. This could be the major reason to cause flow
penetration to the solid body in the conventional IBM results. As shown in the following section,
we will present a variant of IB-LBM to enforce the non-slip boundary condition.

2.2. A Variant of IB-LBM method

Equations (1) and (2) are the governing equations for the flow field. In the lattice Boltzmann
context, they can be replaced by the lattice Boltzmann equation. In this work, the form of lattice
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Boltzmann equation proposed by Guo et al. [30] is adopted, which can be written as

f�(x+e��t, t+�t)− f�(x, t)=−1

�
( f�(x, t)− f eq� (x, t))+F��t (6)

F� =
(
1− 1

2�

)
w�

(
e�−u
c2s

+ e� ·u
c4s

e�

)
·f (7)

�u=∑
�
e� f�+ 1

2
f�t (8)

where f� is the distribution function, f eq� is its corresponding equilibrium state, � is the single
relaxation time, e� is the particle velocity, w� are coefficients that depend on the selected particle,
and f is the external force density. For the popular D2Q9 model [31], the particle velocity set is
given by

e� =

⎧⎪⎪⎨
⎪⎪⎩

0, �=0

(cos[(�−1)�/2],sin[(�−1)�/2])c, �=1,2,3,4
√
2(cos[(�−5)�/2+�/4],sin[(�−5)�/2+�/4])c, �=5,6,7,8

(9)

where c=�x/�t , �x and �t are the lattice spacing and time step, respectively. The corresponding
equilibrium distribution function is

f eq� (x, t)=�w�

[
1+ e� ·u

c2s
+ (e� ·u)2−(cs |u|)2

2c4s

]
(10)

with w0= 4
9 , w1=w2=w3=w4= 1

9 and w5=w6=w7=w8= 1
36 . cs =c/

√
3 is the sound speed of

this model. The relation between the relaxation time and the kinematic viscosity of fluid is

	=(�− 1
2 )c

2
s �t

Note that this relationship is given from the Chapman–Enskog expansion [31] in such a way that
the macroscopic flow variables such as density and velocity obtained in the LBM can satisfy N-S
equations. If we define the intermediate velocity u∗ as

�u∗ =∑
�
e� f� (11)

and the velocity correction as

��u= 1
2 f�t (12)

then Equation (8) can be written as

u=u∗+�u (13)

In the conventional IB-LBM, f is computed explicitly by Equation (5) or the direct forcing method
[25, 27] or the momentum exchange method [28]. When the corrected velocity field is obtained
from Equation (13), there is no guarantee that the velocity at the boundary point interpolated from
the corrected velocity field satisfies the non-slip boundary condition. To overcome this drawback,
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Boundary point

Fluid points
domain

Figure 1. Configuration of boundary points and their surrounding fluid points.

we have to consider the force density f as unknown, which is determined in such a way that the
velocity at the boundary point interpolated from the corrected velocity field satisfies the non-slip
boundary condition. As shown in Figure 1, the velocity correction �u at Eulerian points is distributed
from the velocity correction at the boundary (Lagrangian) points. In the IBM, the boundary of the
object is represented by a set of Lagrangian points XB(sl , t), l=1,2, . . . ,m. Here, we can set an
unknown velocity correction vector �ulB at every Lagrangian point. The velocity correction �u at
the Eulerian point can be obtained by the following Dirac delta function interpolation:

�u(x, t)=
∫

�
�uB(XB, t)�(x−XB(s, t))ds (14)

In the actual implementation, �(x−XB(s, t)) is smoothly approximated by a continuous kernel
distribution

�(x−XB(s, t))=Di j (xi j −Xl
B)=�(xi j −Xl

B)�(yi j −Y l
B) (15)

where �(r) is proposed by Peskin [32] as

�(r)=

⎧⎪⎨
⎪⎩
1

4

(
1+cos

(
�|r |
2

))
, |r |�2

0, |r |>2

(16)

Using Equation (15), the velocity correction at Eulerian points can be expressed as

�u(xi j , t)=∑
l

�ulB(Xl
B, t)Di j (xi j −Xl

B)�sl (l=1,2, . . . ,m) (17)
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where �sl is the arc length of the boundary element. In order to satisfy the no-slip boundary
condition, the fluid velocity at the boundary point must be equal to the boundary velocity at the
same position

Ul
B(Xl

B, t)=∑
i, j

u(xi j , t)Di j (xi j −Xl
B)�x�y (18)

Here, Ul
B is the boundary velocity; u is the fluid velocity, which is corrected by the velocity

correction �u

u(xi j , t)=u∗(xi j , t)+�u(xi j , t) (19)

where u∗ is the intermediate fluid velocity obtained from Equation (11). Note that the unknowns
in Equations (18) and (19) are the velocity corrections at the boundary points, �ulB. Substituting
Equations (19) and (17) into Equation (18) gives

Ul
B(Xl

B, t) = ∑
i, j

u∗(xi j , t)Di j (xi j −Xl
B)�x�y

+∑
i, j

∑
l

�ulB(Xl
B, t)Di j (xi j −Xl

B)�sl Di j (xi j −Xl
B)�x�y (20)

Equation system (20) can be further rewritten as the following matrix form:

AX=B (21)

where X={�u1B,�u2B, . . . ,�umB }T, B={�u1,�u2, . . . ,�um}T with

�ul =Ul
B(Xl

B, t)−∑
i, j

u∗(xi j , t)Di j (xi j −Xl
B)�x�y (l=1,2, . . . ,m) (22)

Note that the elements of matrix A are only related to the boundary points and their nearby Eulerian
points (see Figure 1). After obtaining the velocity correction at the boundary point by solving
equation system (21), the velocity correction and the corrected velocity at Eulerian points are then
calculated by Equations (17) and (19). In our simulation, the density and pressure are calculated by

�=∑
�

f�, P=c2s� (23)

With velocity correction �u, the force density f can be simply calculated by Equation (12) as

f=2��u/�t (24)

Equation (24) can be applied at the boundary points to compute the lift and drag forces. The basic
procedure of present IB-LBM is outlined as follows:

• Step 1: Set initial values, compute the elements of matrix A, and get its inverse matrix A−1.
• Step 2: Use Equation (6) to get the density distribution function at time level t= tn (initially

setting F� =0) and compute the macroscopic variables using Equations (11) and (23).
• Step 3: Solve equation system (21) to get the velocity corrections at all boundary points and

use Equation (17) to get velocity corrections at Eulerian points.
• Step 4: Correct the fluid velocity at Eulerian points using Equation (19) and obtain the force

density using Equation (24).
• Step 5: Compute the equilibrium distribution function using Equation (10).
• Step 6: Repeat Step 2 to Step 5 until convergence is reached.
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3. RESULTS AND DISCUSSION

3.1. Steady flow over a stationary circular cylinder

To demonstrate that the present approach has no flow penetration to the boundary of immersed
object and provides more accurate forces acting on the object, the steady flow over a stationary
circular cylinder is selected for simulation. This problem has been studied extensively and there are
numerous theoretical, experimental, and numerical results available in the literature. Depending on
the Reynolds number, different kind of flow behaviors can be characterized. Here, the Reynolds
number is defined as

Re= U∞D

	
(25)

whereU∞ is the free stream velocity, D is the diameter of cylinder, and 	 is the kinematic viscosity.
It has been pointed out by Lai and Peskin [33] that the drag force arises from two sources: the

shear stress and the pressure distribution along the body. The drag coefficient is defined as

Cd= FD

( 12 )�U
2∞D

(26)

where FD is the drag force. Here, it can be calculated by

FD=−
∫

�
fx dx (27)

where fx stands for the x-component of force density f at the boundary point. In our proposed
IB-LBM, the boundary forces could be calculated directly from the velocity corrections by using
Equation (24). It is a simple way for the force computation. There are some other ways to
compute forces. For example, the control volume method could be employed. It is accomplished
by integrating the momentum equations over a control volume �

FD=−
{
d

dt

(∫
�
u1 d�

)
+

∫
S

[
u1�u · �n+ pn1−�

(
�u1
�xi

+ �ui
�x1

)]
ds

}
(28)

where S is the control surface, �n is the normal vector to the control surface, �n=(n1,n2), the
subscripts 1 and 2 denote the x-direction and y-direction, respectively. Compared with our method,
the control volume method needs to evaluate derivatives of flow variables, which may wipe out
the simplicity of IB-LBM.

The simulations at Re=20 and 40 are carried out. The computational domain is set by
50D×50D. The cylinder is located at (20D, 25D). The free stream velocity is taken as U∞ =0.1
and the fluid density is �=1.0. The computation starts with the given free stream velocity. At the
far-field boundaries, the equilibrium distribution functions are used to implement the boundary
condition. To well capture the accurate solution near the cylinder surface, fine grid is used around
the cylinder. On the other hand, considering the computational efficiency, coarse grid is good
enough for the region far away from the cylinder. To balance these two, the non-uniform mesh is
used in the present simulation. As the standard lattice Boltzmann method is only applicable on the
uniform mesh, in this work, we adopt the Taylor series expansion and least-squares-based lattice
Boltzmann method (TLLBM) [34], which can be well applied on the non-uniform mesh.
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Table I. Grid-dependent study for flow over a cylinder at Re=20.

Mesh spacing of uniform
Total mesh size mesh around cylinder Cd L

301×251 1
50 2.084 0.96

351×301 1
60 2.079 0.95

401×351 1
70 2.075 0.94

451×401 1
80 2.072 0.92

To investigate the convergence of present method with respect to the numerical resolution (mesh
size), the cases with four different mesh sizes at Re=20 were simulated. Table I compares the
calculated length of recirculation bubbles L (based on the diameter of cylinder D) and drag
coefficient Cd under four different mesh sizes. Clearly, as mesh size increases, numerical results
tend to be grid-independent.

In the following simulation for Re=20 and 40, a very fine uniform mesh size of 97×97 is used
in a small region around the cylinder (1.2D×1.2D). The streamlines are plotted in Figure 2 for
the case of Re=40. As shown in the figure, a pair of symmetric recirculation bubbles appears in
the wake of the cylinder. At the same time, we can observe two pairs of weak vortices enclosed
inside the cylinder. It means that the flow inside the cylinder has been occluded by the boundary.
This is an ideal case as it ensures no mass exchange between interior and exterior of the cylinder
surface. As shown clearly in Figure 2(b) (near wall flow field), the streamlines outside and inside
the cylinder attach the cylinder surface completely. To the best of our knowledge, this is the first
such promising result obtained by IBM and its various versions. The good performance of present
results is indeed due to enforcement of non-slip boundary condition to prevent flow penetration to
the boundary.

Table II compares the values of L and Cd for two cases with previous data [35–38]. Also shown
in the table are the results obtained by conventional IB-LBM [28]. From the table, we can see
clearly that the present drag coefficients are closer to the experimental data and numerical results
obtained by body-fitted N-S solvers than the conventional IB-LBM results. This is also because
the non-slip boundary condition is enforced in the present method and flow penetration is avoided.
As a consequence, the boundary force could be computed more accurately. This is of underlying
importance for moving boundary flow problems.

3.2. Flow over a moving circular cylinder

For the case presented above, the cylinder is stationary. To investigate the capability of the present
method for modeling moving boundary flow problems, the simulation of flow over a moving
cylinder is carried out. To ease the simulation, the uniform mesh is used. For making comparison,
the flow over a stationary cylinder is also simulated on the same mesh. The computational domain
is set by 32D×32D with a mesh size of 1281×1281. The stationary cylinder is located at
(8D, 16D). The moving cylinder moves toward the left from the position of (30D, 16D). The
Reynolds number for both cases are taken as Re=40.

To compare the results of moving cylinder case with that of stationary cylinder case, we can
adjust the frame of reference. It can be easily implemented by adding an opposite velocity U∞ onto
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Figure 2. Streamlines for flow over a stationary cylinder at Re=40: (a) global
view and (b) near wall flow field.

the velocity in the Eulerian mesh. The adjusted streamlines are shown in Figure 3. For comparison,
the streamlines of stationary cylinder case are also shown in Figure 3. It is apparent that the results
of both cases have good agreement with each other. The good agreement of both results can be
further confirmed by Figure 4, which compares the pressure profiles on the surface of cylinder for
two cases. Here, the pressure distribution is calculated by

Cp = PB−P∞
( 12 )�U

2∞
(29)

where PB and P∞ are, respectively, the pressure on the boundary of cylinder and far-field pressure.
Similar to Equation (18), the pressure PB could be calculated by

PB=∑
i, j

P(xi j )Di j (xi j −Xl
B)�x�y (30)
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Table II. Comparison of drag coefficients and length of recirculation zone.

Case Authors Cd L

Re=20 Dennise and Chang [35] 2.05 0.94
Nieuwstadt and Keller [36] 2.053 0.893
Fornberg [37] 2.000 0.94
Shukla et al. [38] 2.07 0.92
Niu et al. [28] 2.144 0.945
Present 2.072 0.92

Re=40 Dennise and Chang [35] 1.52 2.35
Nieuwstadt and Keller [36] 1.54 2.18
Fornberg [37] 1.498 2.25
Shukla et al. [38] 1.55 2.34
Niu et al. [28] 1.589 2.26
Present 1.554 2.3

Figure 3. Streamlines for moving and stationary cylinder cases at Re=40: (a) moving cylinder case
and (b) stationary cylinder case.

Through this example, on one hand, we demonstrate the capability of the present method for
simulation of flows around a moving object; on the other hand, we show Galilean invariance of
the present approach.

3.3. Flow over a rotationally oscillating cylinder

Vortex shedding in the near wake behind a bluff body could produce periodically oscillating drag
and lift forces. These fluctuating forces would produce structural vibrations, acoustic noise, or
resonance. Hence, it is very important from practical engineering perspective to control vortex
shedding appropriately. Many attempts for such control have been made recently. One of simple
attempts is the rotary control of cylinder wake [39, 40]. Here, we apply our developed method to
simulate such moving boundary flow problem.

The control of motion has the form of the rotary oscillation of the cylinder with the instantaneous
rotational velocity given by


(t)=
0 sin(2� f t)= A
2U∞
D

sin

(
2�Stf

U∞
D

t

)
(31)
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Figure 4. Pressure distribution on the surface of cylinder at Re=40.

where U∞ and D represent the free stream velocity and diameter of cylinder, respectively. f and

0 are the frequency and the rotation amplitude, respectively, which can be expressed in terms
of non-dimensional parameters: the Strouhal number Stf = f D/U∞ and the normalized amplitude
A=
0D/(2U∞). These two parameters are sufficient to characterize the control.
The computational domain is set by 50D×40D with a mesh size of 551×301 and the cylinder

is located at (20D, 20D). The region around the cylinder is 1.2D×1.2D with a very fine uniform
mesh size of 121×121. The whole domain is discretized on the non-uniform mesh. Hence, the
TLLBM [34] is applied.

In the present simulation, A=2.0 is selected. Based on the free stream velocityU∞ and diameter
of cylinder D, the Reynolds number is taken as Re=100. To verify our method for this problem,
the case of Stf =0.163 is simulated first. At Re=100, the natural vortex shedding (Stn) for flow
over a stationary cylinder is about 0.163. As indicated by Choi et al. [39], when Stf =Stn , the
interesting vortex shedding pattern would happen, which is shown in Figure 5. Note that the result
of Choi et al. [39] is also included in Figure 5 for comparison. It is clear from the figure that the
present result compares well with that of Choi et al. [39]. We also simulate the case of Stf =0.4
to compare the forces exerted on the cylinder with that of Choi et al. [39]. The computational
domain of their simulation is 0.5D�r <50D and 0��<2� and the O-type grid with a mesh
size of 241×241 is used. The obtained time-averaged coefficient and maximum amplitude of
lift coefficient fluctuation are 1.302 and 0.321, respectively. The corresponding values of Choi
et al. [39] are 1.231 and 0.299. The small differences between the present results and those of
Choi et al. [39] may be caused by the use of IBM. Since the delta function, which is employed
to relate the information between immersed boundary and flow field, only has the first order of
accuracy, the computed forces in IBM are a little bit larger. In addition, the computational domain
of Choi et al. [39] is much bigger than that of the present simulation. This may also induce the
differences between two numerical results.
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Figure 5. Comparison of vorticity contours when Stf =Stn at Re=100: (a) result of present simulation
and (b) result of Choi et al. [39].

After verification of the method, the cases for five different forcing frequencies are simulated.
They are Stf =0.1, 0.16, 0.3, 0.7, and 0.9. Figure 6 illustrates the instantaneous vorticity contours
obtained from the numerical simulations at the same time levels. As a reference, the flow pattern
of stationary cylinder case is also included. The similar vorticity contours have been obtained by
Protas and Wesfreid [40]. Figure 6(b) shows that the vortices with Stf =0.1 have the wavelength
about twice as big as that in the stationary case (shown in Figure 6(a)). In Figure 6(c), the
cylinder releases two arrays of regular vortices per half-cycle. This flow pattern happens when the
forcing frequency is close to the natural shedding frequency. In Figure 6(d), the wake structure
is synchronized with the rotary oscillation forcing and moves downstream without coalescence.
This feature can be utilized to stabilize the flow in the wake of the cylinder. In Figure 6(e), the
near-wake structure also becomes synchronized with the forcing. However, it becomes unstable
and merges into a large-scale vortex some distance downstream. In Figure 6(f), the oscillation
forcing only generates small-scale vortices in the shear layers near the cylinder, and most of the
wake resembles that behind the stationary cylinder.

The flow behind a rotationally oscillating cylinder can be classified into two categories: lock-on
and non-lock-on. According to Choi et al. [39], the cases for Stf being equal to 0.1, 0.16, and 0.3
belong to lock-on and the remaining cases belong to non-lock-on. As pointed out in [39], one of
the characteristics for the non-lock-on region is the occurrence of modulation phenomenon. The
modulation frequency is very low as compared with the forcing and vortex shedding frequencies.
Figure 7 shows the time histories of the lift and drag coefficients for non-lock-on cases. Figure 8
shows the variations of the time-averaged drag coefficients and the maximum amplitude of the
lift coefficient fluctuations due to rotary oscillation forcing. In the present simulation, the mean
drag coefficient for the stationary cylinder is about 1.361. It is shown in Figure 8(a) that the
mean drag decreases markedly with increasing Stf in the lock-on region, and it increases gradually
with increasing Stf in the non-lock-on region. The local minimum of mean drag exists near the
boundary between the lock-on and non-lock-on regions. A similar trend is found for the maximum
amplitude of the lift coefficient fluctuations in Figure 8(b).
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6. Vorticity contours at Re=100 for flow around a rotationally oscillating cylinder
(solid lines: positive; dashed lines: negative): (a) stationary; (b) Stf =0.1; (c) Stf =0.16;

(d) Stf =0.3; (e) Stf =0.7; and (f) Stf =0.9.

3.4. Unsteady flows at low Reynolds number flapping flight

The flapping insect flight has fascinated physicists and biologists for more than one century.
As compared with the fixed wing, flapping wing demonstrates attractive lift enhancement due
to unsteady effects, which is very important for insect flight. Using the proposed method, we
will simulate unsteady flows arising from flapping of a single elliptical wing to display the flow
patterns associated with wing translation and rotation, as well as stroke reversal. The obtained
fluid forces on the object are compared with those obtained numerically and experimentally in
References [41, 42].

In the current simulation, the elliptical wing of aspect ratio 10 follows a prescribed sinusoidal
translational and rotational motion. Specially, the wing sweeps in the horizontal plane and pitches
about its center

x(t)= A0

2
cos(2� f t), y(t)=0 (32)

�(t)=�0+�sin(2� f t+
) (33)
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Figure 7. Time histories of the lift and drag coefficients for two non-lock-on
cases: (a) Stf =0.7 and (b) Stf =0.9.

where x(t), y(t) is the position of the center of wing, �(t) is the wing orientation that is measured
counterclockwise relative to the positive x-axis. The parameters also include the stroke amplitude
A0, the initial angle of attack �0, the amplitude of pitching angle of attack �, the frequency f , and
the phase difference � between x(t) and a(t). For the motion simulated in this work, the Reynolds
number can be defined as Re=Umaxc/	=� f A0c/	, where Umax is the maximum wing velocity
and c is the chord. In current simulation, A0/c=2.8 with Re=75 is used. Other parameters �0,�,
and f are fixed to be �/2,�/4, and 0.25Hz, respectively. Based on previous investigations, it is
well known that the phase difference � between rotation and translation is a critical parameter in
force generation. Here, two phase differences are selected: �=�/4 and −�/4, corresponding to the
advanced and delayed rotation, respectively. To make a fair comparison, all the above parameters
are chosen the same as those used by Wang et al. [41] and Eldredge [42]. The computational
domain of 20c×20c is discretized by a non-uniform mesh. The region around the center of domain
for the wing motion is 3.5c×1.2c with a very fine uniform mesh size of 281×97.
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the value for stationary cylinder case) and (b) maximum amplitude of the lift coefficient fluctuation.

Figure 9 shows four snapshots of vorticity contours given in one cycle for advanced rotation
of �=�/4. They are very similar to those obtained by Eldredge [42], which gave the physical
interpretation.

The time histories of lift and drag coefficients are plotted in Figure 10. The previous numerical
and experimental results [41, 42] are also included for comparison. All forces are normalized by
the maxima of the corresponding quasi-steady forces that are mentioned in [41]: CL =1.2sin(2�),
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Figure 9. Vorticity contours in one cycle for �=�/4.

CD=1.4−cos(2�), where � is the angle of attack. From Figure 10, we can see that the present
lift coefficient matches very well with the result of Eldredge [42], and the peak values are in good
agreement with those from Wang et al. [41] in the whole four strokes. In the later strokes, the peak
values of lift also compare well with experimental results of [41]. The present drag coefficients
also agree very well with those given in [41, 42]. Figure 11 depicts the vorticity contours for the
delayed rotation case of �=−�/4. By comparing the results of �=�/4 with those of �=−�/4,
the sensitivity to the kinematics is obvious. Similar to the advanced rotation case, the behavior
of leading edge vortex is recaptured and trailing edge vortex shedding is also observed. The
instantaneous lift and drag coefficients are plotted in Figure 12 and are compared with those of
Wang et al. [41]. It can be found that the agreement is reasonable. By comparing Figure 10 with
Figure 12, we can find that the characteristics of lift and drag are very different. The time-averaged
lift and drag coefficients are (0.526, 0.567) and (0.101, 0.721), respectively, for advanced and
delayed rotation cases. From these values, we can conclude that the phase difference � affects the
force generation significantly, especially for the lift production.

3.5. Flow over a flapping flexible airfoil

The numerical solution of fluid flow problems with thin flexible moving objects is motivated
by the wide range of potential applications in biology and physiology. In comparison with

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:327–354
DOI: 10.1002/fld



344 J. WU, C. SHU AND Y. H. ZHANG

time

C
l

0 1 2 3 4
-1

-0.5

0

0.5

1

1.5

2

2.5
present
Eldredge
Wang et al.(2D simulation)
Wang et al.(3D experiment)

time

C
d

0 1 2 3 4
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
present
Eldredge
Wang et al.(2D simulation)
Wang et al.(3D experiment)

Figure 10. Time histories of lift and drag coefficients for �=�/4.

rigid airfoils, the flapping flexible airfoils may generate better aerodynamic performance under
certain conditions. Recently, Miao and Ho [43] investigated the effect of flexure on aerody-
namic propulsive efficiency of flapping flexible airfoil. To exhibit the capability of our method
for modeling such kind of problems, the simulation of a single flapping flexible airfoil is
carried out.
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Figure 11. Vorticity contours in one cycle for �=−�/4.

In our simulation, a single NACA0012 airfoil with flexural deformation executes plunge motion,
which means that the airfoil makes the cross flow oscillation. The plunge motion of airfoil shown
in Figure 13 can be expressed by

h=h0ccos(�t) (34)

where h means the instantaneous position of the airfoil, h0 is the dimensionless stroke amplitude,
c denotes the chord length of the airfoil, and � is the flapping frequency.

Inspired by the hydrodynamics of fish-like swimming, the profile of the flexible airfoil varying
over time can be expressed by

y=−a0cx
2 cos(�t+�) (35)

where a0 is the dimensionless flexure amplitude and � denotes the phase angle. In the above
equation, the x− y local frame refers to the body coordinate system and x is in the range of [0,c]
with x=0 corresponding to the head of airfoil and x=c to the tail.

In the study of Miao and Ho [43], they found that the thrust-indicative wake structures were
generated only when a0 is less than 0.5. It means that when a0 is larger than 0.5, the flexible
structures could not enhance aerodynamic performance. In the current simulation, the parameters for
controlling the airfoil motion are chosen as: h0=0.4, a0=0.3, �=�/2, and �=0.2, 0.3, 0.4, 0.5.
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Figure 12. Time histories of lift and drag coefficients for �=−�/4.

The Reynolds number based on the chord length c is Re=500. A non-uniform mesh is used in
the whole computational domain of 30c×24c. In the small region around the airfoil (1.1c×1.5c)
where airfoil is moved, a very fine uniform mesh size of 221×301 is applied.

The instantaneous vorticity contours in one cycle and evolution of drag coefficient are plotted in
Figures 14 and 15, respectively. For comparison, the results of flapping rigid airfoil with the same
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h0c

a0c

c

Figure 13. Plunge and deflection motion of a single flexible airfoil (solid line: downstroke
motion; dashed line: upstroke motion).

stroke amplitude are also included. In both cases, the flapping frequency � is 0.4. From Figure 14,
we can observe the vortex being shed from the trailing edge of airfoil due to oscillation of the
airfoil. Subsequently, the periodic vortex shedding induces the drag coefficient to vary periodically,
which can be observed in Figure 15. We can also find that the drag coefficient becomes negative
partly, which implies generation of a propulsive force. Figure 14 reveals that the flow patterns of
two cases are almost the same except that the wavelength of vortex for rigid airfoil is a bit longer
than that of flexible airfoil. One reason may be that the flexible airfoil makes the vortex shed more
easily, implying that the vortex shedding becomes faster. Additionally, it is noticeable in Figure 15
that the maximum of negative drag coefficient for flexible airfoil is much larger than that of rigid
airfoil, and that more negative drag region appears for flapping flexible airfoil. Therefore, it may
be concluded that the flexure could effectively augment the propulsive force for flapping airfoil.

Figure 16 presents the evolution of the pressure contours around the rigid and flexible airfoils
during one cycle. The corresponding results for the lift coefficients are plotted in Figure 17. As
can be seen from Figure 16, the pressure in the wake of flexible airfoil is higher than that of rigid
airfoil. As a result, the pressure contributes less drag force for the flexible airfoil case. This is in
line with the findings in [43].

To demonstrate the effect of flapping frequency on the generation of thrust force, the evolution
of drag coefficients with four different flapping frequencies is depicted in Figure 18. It is clear that
the maximum negative drag coefficient increases with the flapping frequency. Higher frequency
implies more generation of propulsive force.

Let T denote the flapping period, the period-averaged thrust force F̄x can be calculated by

F̄x = 1

T

∫ T

0
Fx (t)dt (36)

where Fx (t) represents the instantaneous thrust force on the airfoil, which is equal to the negative
drag force. Therefore, we can define the period-averaged thrust power coefficient � as

�= F̄xU∞
( 12�U

2∞c)U∞
=− 1

T

∫ T

0
Cd dt (37)
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Figure 14. Instantaneous vorticity contours for flapping airfoil in one cycle:
(a) rigid airfoil and (b) flexible airfoil.
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Figure 15. The evolution of drag coefficients for rigid and flexible airfoils.

Figure 19 shows the variation of the thrust power coefficient with the flapping frequency. It
can be seen that the thrust power coefficient is greater at larger flapping frequency. Hence, same
conclusion with that from Figure 18 can be obtained.

4. CONCLUSIONS

A new version of immersed boundary-lattice Boltzmann method (IB-LBM) is presented in this
paper for simulating incompressible viscous flows around moving objects. In the conventional IB-
LBM, the force density is calculated explicitly by Hook’s law or the direct forcing method or the
momentum exchange method. Therefore, the non-slip boundary condition is only approximately
satisfied. In this study, the force density, which can be recognized as the velocity correction, is set
as unknown. It is solved by enforcing the non-slip boundary condition. Moreover, the lift and drag
forces on the moving object can be easily calculated via the velocity correction on the boundary
points. The lattice Boltzmann equation with a force density term is adopted in this work to obtain
the flow field at the Eulerian points.

To show that the present method does not have any flow penetration to the solid boundary and
provides better results for the forces acting on the object, the steady flow over a stationary circular
cylinder was first simulated. Numerical results do confirm our expectation. For moving boundary
flow problems, the simulation of flows around a moving circular cylinder, a rotationally oscillating
cylinder, and an elliptic flapping wing was performed. The obtained numerical results are compared
well with available data in the literature. In addition, to demonstrate the capability of the present
method for solving elastic boundary flow problems, the flow around a flexible flapping airfoil
was simulated. It was found that as compared with the flapping rigid airfoil, the flapping flexible
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Figure 16. The pressure contours for flapping airfoil in one cycle: (a) rigid airfoil and (b) flexible airfoil.
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Figure 17. The evolution of lift coefficients for rigid and flexible airfoils.
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Figure 18. The evolution of drag coefficients with different frequencies.

airfoil can easily generate the propulsive force. Through numerical experiments, it is believed that
the present method has a potential to effectively simulate incompressible viscous flows around
moving objects. Owing to simplicity of the approach, the present method could be easily extended
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to simulate three-dimensional incompressible viscous flows around complex geometries and/or
moving objects.
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